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A Bayesian definition of code Validation?

The process of increasing our subjective degree of

belief in the results of a single calculation, or of a

set of calculations.

•“Subjective” does not mean “arbitrary”

•“Belief” does not equal “imagination”



TGT-UQWG-4-99 Page 3

Compare this to how the ASCI V&V program
actually defined code Validation.

The process of determining the degree to which a

computer calculation is an accurate representation

of the real world.

•The V&V “vision” was stated as follows:

“Establish confidence in the simulations supporting
the Stockpile Stewardship Program through 
systematic demonstration and documentation of the
predictive capability of the codes and their 
underlying models.”
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Following a thought of Easterling, consider the
scheme:

My degree of belief goes way up if the following quantity is “small”:

321 eeee ++=

experimentnature1 yye −=

calcexperiment2 yye −=

exactcalc3 yye −=

Ynature is “reality”;

yexperiment is what we “measure”;

yexact is the exact solution of the model;

ycalc is the code solution of the model;

The terms suggest a general norm used to
assess differences
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Making e3 “small enough” is the verification
problem:

• Relying upon the mathematicians to tell us what the exact solution
is probably won’t work.

• Relying upon numerical analysis to tell us exactly what the normed
difference is probably won’t work.

• Uncertainty quantification is part of the solution of this problem.
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Making e2 “small enough” is the “practical”
validation problem:

• The ideal validation problem is to compare the experimental data
with the exact model result. We can’t do that in any case anybody
care’s about.

• The “practical” approach looks like it really works as long as you
have also done the verification problem.

• Ergo, verification and validation are strongly coupled. This is not
exactly a revelation.

• Uncertainty quantification is part of the solution of this problem.
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Making e1 small enough is beyond our scope.

• The problem is real. Think about the enhanced surveillance
program.

• We know that a high quality interaction between codes and
experiments can lead to reduction in the size of the difference
between “reality” and “experiment.”

• Uncertainty quantification is part of this problem. It is highly
subjective in frontier experimental sciences (high energy physics,
for example).
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The obvious conclusion is -

Uncertainty quantification
is important for validation.
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We seek to validate multi-physics codes.

Multi-physics often implies general purpose.

General purpose implies that users are a huge component in
“correct” application of the code. Code validation does not address
user error per se, but we still need to worry about it.

Multi-physics also often implies research models are present.

An example is the Sandia code ALEGRA:

3-D multi-material Arbitrary Lagrangian Eulerian Radiation-
MHD shock wave physics code

C++ (150000 lines) + MPI + C + Fortran, etc. (1,000,000 total
including special libraries)

Under development
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Example: ALEGRA is a multi-physics code.

Basic Shock

Wave Physics

Basic Shock

Wave Physics

High Pressure/Temperature 

Shock Wave Physics

High Pressure/Temperature 

Shock Wave Physics

Mesh Adaptivity 

(HAMMER)

Mesh Adaptivity 

(HAMMER)

Electromechanics 

(EMMA)

Electromechanics 

(EMMA)

Radiation MHD 

(HYRUM)

Radiation MHD 

(HYRUM)

Core
technology

Conventional weapons,
basic shock wave physics

Hypervelocity impact, weapon
effects, extreme events

NG ferroelectric power
supplies

Z machine program,
ICF

Preprocessors

Postprocessors

Each of these elements needs
verification (and validation)

V&V Plan
is coming
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Do we need validation “science”?

"...we never (least of all in science) draw inferences from mere
observational experience to the prediction of future events.
Rather, each such inference is based upon observational
experience...plus some universal theories…”

Karl Popper, Objective Knowledge
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What is “uncertainty quantification” and why
do I care?

Uncertainty quantification: an anti-reductionist measure of “error”.

The forward prediction problem:
Characterize the “input” uncertainty (stochastic, fuzzy, etc)

Propagate this uncertainty through the code

Characterize the resulting output uncertainty

Refine this characterization via comparison with data

Develop “code reliability” metrics and statements (need requirements)

(Most of this is not rocket science for an initial implementation.)

Now follow it with backward prediction:
Reduce the code uncertainty via the output uncertainty characterization
(Bayesian?).

(This IS rocket science.)

Now optimize:
Perform forward/backward prediction sweeps to increase “code reliability”
and guide new experiments.
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Local validation begins with local uncertainty
quantification, a high dimensional problem.

Application uncertainty space One Simulation Simulation Family

Alternatively, think of results being replaced
by probability distributions of results. Then,
do response surface methods, or other things,
to characterize the result family stochastically.
The most important issue is this
characterization.

The number of parameters can be enormous -
parsimony is hoped for (but unlikely?).

Parameters

Local uncertainty quantification performs
systematic studies of code uncertainty from
stochastic treatments of parameter
uncertainty. U is a random variable, P is a
random vector.

Notice that how uncertainty U is defined is an
issue.

Uncertainty (e2)

)P(e2

r
“Internal” parameter
space

Example: Component design with
stochastic material variations.
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“Global” validation leads to global uncertainty
quantification, an even higher dimensional problem
with “internal” and “applications” parameters.

Uncertainty has two
components:

“Local”  - uncertainty
quantification and local data
comparisons.

“Global” - system scale
uncertainty quantification and
global data comparisons.

Can we use spatial statistics
methods (like kriging) to
characterize e2(A,P)?

Note that we have simplified the
problem by assuming that the
internal parameter functional
dependence is constant over
application space. Is this true?

Application uncertainty space

Example: NIF ignition capsule design confidence levels based on
uncertainty quantified NOVA design calculation experience.

)P ,A(e 112

rr

Interpolation

Application

Uncertainty (e2)

Extrapolation)P ,A(e 122

rr
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rr

)P ,A(e 152
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“Uncertainty” probably looks a lot more complex
than suggested by the previous figures.

What we hope for

Our worst fear
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Example - Hypervelocity Impact

Missile defense simulations provide
an excellent application for studying
predictive complexity.

There are at least six stochastic
parameters to begin with: the hit
point and the engagement velocity

Time

P
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MACRO

MESO

MICRO

“Validation data”.

Validation is a multiscale
problem in this case.

The necessary information is
a mix of qualitative and
quantitative.
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Consider validating the microscale with laboratory
hypervelocity impact experiments.

Material #2

Material #1

Material #3

D

V

d



TGT-UQWG-4-99 Page 18

Levels of phenomenology at the microscale:

Projectile strikes
the bumper layer

1

Projectile disrupts

2

Bumper disrupts

3

Residual hole
in bumper

5

Secondary
structure damage

7

Material is
ejected front
and back

4

Debris impacts
secondary structure

6

Predict secondary damage



TGT-UQWG-4-99 Page 19

Further levels of phenomenology in this
experiment:

Projectile disrupts

Temporally,
spatially varying

compressive waves

Wave propagation,
attenuation,

reflection from free
surface

Release states
form and interact:

spall, fracture,
fragmentation,
melting, boiling

EOS, constitutive behavior in compression:
Hugoniot states, two and multi-wave structures,
compressive strain- and strain-rate dependent

strength effects

Correct wave speeds, non-planar waves; rise-time
effects at reflections; hydrodynamic and dissipative
wave attenuation, time-dependent spall, nucleation

and growth of void; shear localization

Time-dependent spall, ejecta, phase transitions;
kinetics; thermal localization and trapping; non-

classical viscosity; damage nucleation and growth;
statistical breakup phenomena
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The parameter space for these experiments:

“Experimental” parameters:

•Impact location (2)

•Velocity vector (3)

•D, d (2)

•Projectile geometry (1)

•Materials (none)

Total = 8

“Internal” parameters:

•Hydrodynamic parameters (H)

•Material Models (M)

Total = H+M

“Uncertainty” Metrics:

•Time-resolved data in witness material (PVF gauges)

•Time- and spatially-resolved debris cloud data (radiography)

•Target recovery and inspection
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Parameter versus uncertainty space

Experimental Parameters = 8

Difference With
Experimental Data

“Internal” parameters
= M+N

)P ,A(e2

rr

Specific Expt

Use stochastic forward
propagation techniques for
determining the “local”
uncertainty. Examples include

- Statistical experimental design
(sampling)

- Stochastic differential equations

- Stochastic finite elements
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One way to worry about grid resolution:

Increasing grid
resolution

Grid Resolution #1

Grid Resolution #2

Increasing grid resolution does not mean uniform refinement (ALE, adaptivity,
geometry constraints). Algorithm parameters controlling dynamic grid
resolution are included in the internal parameters.
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A thought experiment: projecting the uncertainty

Interpolation Extrapolation

Uncertainty
(e2)

Impact
velocity

Evidence for
model breaking?

Sod Problem

0
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Thanks to Kamm and Rider
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Some speculation and reasonable opportunities
for research: Uncertainty as a spatial random field

I. Let the uncertainty be represented by a (M+H+8) dimensional
spatial stochastic process

For example, we end up worrying about properties of something
like the variogram:

))P,A(-)P,A((2)]P,A(e)P,A(evar iijjii2jj2

rrrrrrrr
γγ=−[

Then, we can develop predictors for U at other points, such as
the BLUP (Best Linear Unbiased Predictor):

)P,A(e)P,A(e ii2

n

1i
i002

rrrr
ˆˆ ∑

=

= λλ

Or (µµ = mean of random field, S = fine structure, and εε =
“measurement error”:

)A()P,AS()P,A()P,A(e2

rrrrrrr
εεµµ ++=~
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Comments:

See J. Sacks, W. J. Welch, T. J. Mitchell and H. P. Wynn (1989),
“Design and Analysis of Computer Experiments,” Statistical
Science, Vol. 4, No. 4, 409-435; N. Cressie (1988), “Spatial
Prediction and Ordinary Kriging,” Mathematical Geology, Vol.
20, No. 4, 405-421.

Do we need another framework other than probability to do
this?

What is the appropriate way to partition this random field
among the experimental parameters and the internal
parameters? Does this question even make sense?

What structure do we require on the projected random field
U(A,P) to facilitate piecing together the various uncertainties?
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Speculation:  Sensitivity coefficients

II. Sensitivity studies define which of the H+M+8 parameters is
most important. Probabilistic evaluation of the sensitivities is of
interest.

Is parsimony really true?

Does the sensitivity structure projected onto the
internal parameter space remain invariant as the
experimental parameters alone vary? If no, does this
imply model invalidity?

Does the sensitivity structure remain invariant over grid
variations?

Don’t assume that the parameters are all uncorrelated.
Then we need “interaction” coefficients.

The literature on sensitivity analysis is huge. See M. D. McKay (1995),
“Evaluating Prediction Uncertainty,” Los Alamos Report, LA-12915-MS
for one important approach.
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Speculation:  Model calibration

III. Some understanding of U should lead to improvement in the
model. “Calibration” reduces U locally in the application space by
optimizing the internal parameters.

How does the calibration vary with the experimental parameters?
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Comments:

A Bayesian approach can be applied to the formal study of improving model
uncertainty in the presence of parameters derived via comparison with
experimental data. See, for example, K. M. Hanson (1998), “A Framework for
Assessing Uncertainties in Simulation Predictions,” Los Alamos preprint.

Statistically rigorous comparisons between uncertain calculations and
uncertain data with the intent of providing code validation are the subject of a
recent tutorial report by R. G. Hills (1998), “Statistical Validation of
Engineering and Scientific Models: Background,” Sandia National
Laboratories Contract Report.

This question also leads to the use of “surrogates” for studying parameter
calibration, as well as other optimization questions associated with code
uncertainty. Consider the important work A. J. Booker, et al (1998), “A
Rigorous Framework for Optimization of Expensive Functions by Surrogates,”
Boeing Shared Services Group Report, SSGTECH-98-005.

Other papers that the reader might find of interest are D. D. Cox, J. Park, and
C. E. Singer (1996), “A Statistical Method for Tuning a Computer Code to a
Data Base,” Rice University Department of Statistics Report 96-3 and M. B.
Beck (1987), “Water Quality Modeling: A Review of the Analysis of
Uncertainty,” Water Resources Journal, Vol. 23, No. 8, 1393-1442.
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Speculation: Structural (Model) uncertainty

IV. Is there anyway to deal with “structural” uncertainty?

A Bayesian structure can be developed for considering structural
uncertainty. See D. Draper (1995), “Assessment and Propagation of
Model Uncertainty,” J. R. Statist. Soc. B, Vol. 57, No. 1, 45-97.

This involves developing posteriors via conditioning over the space of
models, a rather hopeless endeavor on the face of it. Additional
structure might make this more feasible.

Model uncertainty is often treated in multi-physics code through the
introduction of tuning parameters. If a code (sub)model is built out of
sub-submodels:

∑=
j

jMM

Uncertainty about the overall model is then treated by modifying this
equation to:

∑=
j

jjMM αα

Add (αα1, …, ααm) to the parameter list and proceed as before.
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Speculation: Is probability appropriate for this
discussion?

How do we treat “variability” in the assumed distributions on the
parameters to do experimental design, sensitivity analysis, and
forward propagation?

Is probability the canonical way to capture “uncertainty?”

Is saying “I don’t know what the value of a parameter is”
the same as placing a probability distribution on it?
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We need to design validation processes to attack
the weak points of codes.

"...the theorist is interested in explanation as such,
that is to say, in testable explanatory theories:
applications and predictions interest him only for
theoretical reasons - because they can be used as
tests of theories..."

Karl Popper, The Logic of Scientific Discovery
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Speculation: “Certification” leads to quantitative
“reliability” analysis.

Interpolation Extrapolation

Probability of
failing the
certification
requirement

Impact
velocity

Do an
experiment

MeasuredThreshold for
unacceptable performance
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There is some connection to reality here.
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DOOMSDACE: Distributed Object-Oriented Software With Multiple
Samplings for the Design and Analysis of Computer Experiments

ALEGRAInterfaceDDACE

Generate inputs

Setup parallel
communication

Retrieve
processed output

Create surrogate
response

Analysis, plotting

Run N ALEGRA
jobs on M
processors

Gather output data
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DDACE - Who’s doing the work (8950):

Juan Meza - manager

Charles Tong - project lead; DDACE development

Kevin Long - ALEGRA link and DDACE development;

Leslea Lehoucq - in ABQ; ALEGRA link and DDACE development

Todd Plantegenet - JAVA GUI development
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Illustration of past work: 1-D “Saltzman” problem

V=1000 km/s Ideal gas

Pmax vs quad viscosity

Response surface for log Pmax vs linear
viscosity vs ∆∆t Courant limiting

Linear Viscosity 0.36

Quadratic
viscosity

0.04

Hourglassing 0.02

Courant Limit 0.3

McKay “correlation ratio” analysis
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Example: A 1-D rad-hydro calculation

Air AlAl

100 µµm
(X)

90 µµm
(Y)

300 µµm

Radiation Pulse

Trad (eV)

Time (ns)

20

40

60

80

100

20 40 60 80 100 120
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Variability parameters:

Initial phase:

Parameters #

Numerical parameters (as before): timestep, artificial viscosity (5% variations) 3

Geometry parameters: x (50-200 µm) and y (50-200 µm) 2

(Most important parameters)

Material parameters: gas density  (variation to be determined) 1

Radiation pulse parameters: (ti, Trad,i), i=1,2,3 (10% variations) 6

Radiation algorithm parameters: ?? (to be determined) 2

Second phase - additional parameters:

Parameters #

XSN opacity parameters: ?? (to be determined)                  2-4
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A recent design study shows what is on our mind.

Work performed by Kevin Long.

Experimental Design - 250 design
points (LHS?).

Run on 32 processors of Elmo (a
California SGI). Each function
evaluation takes about 1/2 hour or
more on the Ultra 2 in my office. You
do the arithmetic related to serial
running of this. Think about the
scaling to 2000 processors on ASCI
Red.

Six hours wall clock time for the total
experiment.

Response surface
construction for “quality
metric” vs two pulse
parameters.

“Quality metric” vs most
sensitive pulse parameter.
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Where we are going with DDACE?

This work is exploratory.

Aiming at exploring some “real” problems:

• Rad-hydro shock wave experimental design problems

• Neutron generator power supply problems

Test bed activities:

• Link up with Brian Rutherford’s DOE work

• Link up with Rich Hill’s work

Big questions:

• How do we make this stuff payoff for strong shock wave
problems?

• How far can we push a “black-box” approach to UQ for a code like
ALEGRA
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In conclusion:

"Summary: Computers Are Here To Stay. They
Endanger Thought, Language, Science, and the
Survival of Man. Like Any Other Dangerous Tool,
They Should Be Put Under Strict Controls."

Clifford Truesdell, "The Computer: Ruin of Science, Threat to Man"
in An Idiot’s Fugitive Essays on Science


